# Introduction

# **Packing materials**

#### **Base Materials**

Silica-based packings are compatible with a wide range of aqueous and organic solvents. Silica-based column can withstand high pressure. Most silica are stable from pH 2-7.5 but special silica may stable from pH 1-10. Silica provides high resolution or sharp peaks with small molecules. Silica-based column are offen used for separations of low molecular weight analytes.

Polymer-based packings are compatible with most mobile phase solvents and sample with a pH 1-14. Polymer-based packing have lower efficiencies for a small molecules compared to silica-based due to smaller surface area. Polymer-based packings are offen used for ion exchange or ion exclusion chromatography.

#### **Particle Size**

Standard particle size is 5 mm. Smaller particle sizes give higher efficiency and higher resolution than larger particle sizes. Larger particle sizes offer faster flow rates and lower back-pressure.

#### **Pore Size**

In general, packing materials with a smaller pore size have higher surface areas and higher capacities than packing materials with larger pore sizes. For general purpose reverse phase application, pore size 100-120Å is recommended. For higher resolution, pore size 60-80Å is recommended. For large molecule such as proteins, pore size 300Å is recommended.

#### Surface Area

A larger surface offers higher capacity and greater resolution. Smaller surface areas equilibrate faster.

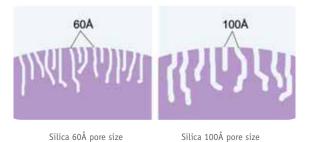
#### Phase Type

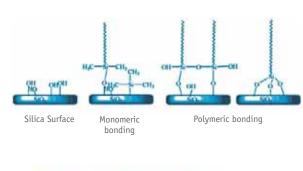
There are 2 types of bonding, polymeric and monomeric. Polymeric bonding offers better column stability under aggressive mobile phase. Monomeric bonding offers lower back pressure. However, high-purity silica phases are very stable whether monomeric or polymeric bonding.

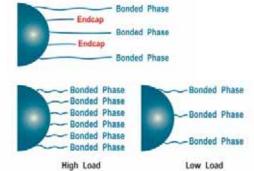
## Endcapping

Free silanol in silica-based reversed-phase packings will interact with polar compounds. Endcapping the bonded phase with C2-C4 will minimizes these interactions. However, non-endcapped phases enhance polar selectivity and stronger retention of polar organic compounds.

## **Carbon Load**


Lower carbon loads are more weakly hydrophobic and reduce retention times. Higher carbon load offer higher capacity and greater resolution.




Polymer packing, 10µm

Silica packing, 5µm







